🏸 Przemysł Zaawansowanej Technologii W Polsce

Przemysł Zaawansowanej Technologii Charakteryzuje Się. Prohlédněte si příklady překladu przemysł zaawansowanych technologii ve větách, poslouchejte výslovnost. Rozwinął się przemysł wysokich technologii, charakteryzujący się wysokim stopniem przetwarzania surowców, dużym udziałem wydatków na badania naukowe. Jak odtłuszczać detale w przemyśle? Magazyn Gospodarka from
Za start czwartej rewolucji przemysłowej przyjmuje się 2013 rok, jednak termin przemysł został użyty po raz pierwszy w 2011 podczas międzynarodowych targów Hannover Messe. W październiku 2012 roku w Niemczech utworzono grupę roboczą, której podstawowym zamiarem było zdefiniowanie kolejnych kroków zmierzających do sformułowania zasad przyszłości automatyzacji fabryk. Rezultatem działań stały się zalecenia skierowane do rządu niemieckiego dotyczące niezbędnych wdrożeń prowadzących do osiągnięcia poziomu tzw. inteligentnego końcowy z prac został zaprezentowany w kwietniu 2013 roku (również na podczas Hannover Messe). Wśród podstawowych wytycznych uwzględniono wtedy:pomysł rozwoju globalnych sieci obejmujących maszyny, systemy magazynowe i urządzenia produkcyjne do postaci systemów cyber-fizycznych,rozwój inteligentnych maszyn, systemów magazynowania i urządzeń produkcyjnych zdolnych do autonomicznej wymiany informacji, wyzwalania działań i wzajemnej kontroli,doskonalenie procesów przemysłowych związanych z projektowaniem, produkcją, zarządzaniem materiałami i łańcuchem dostaw, a także cyklem życia produktu,projektowanie, uruchamianie i rozwój inteligentnych fabryk i produktów,rozwój nowoczesnych metod komunikacji i diagnostyki obiektów przemysłowych (obejmujących swoim zakresem jednoznaczną identyfikację oraz lokalizację awarii w czasie rzeczywistym, gromadzenie danych historycznych i bieżących stanów operacyjnych).(fot. Adobe Stock)Na opisanym etapie prace nad rozwojem koncepcji wdrożenia industry były prowadzone przez platformę, którą stworzyły trzy stowarzyszenia przemysłowe: Niemieckie Stowarzyszenie Technologii Cyfrowej Bitkom, Stowarzyszenie Przemysłu Mechanicznego VDMA oraz Stowarzyszenie Producentów Przemysłu Elektrycznego i Elektronicznego ZVEI. Od tej pory idea przemysłu stała się tematem przewodnim w rozwoju przedsiębiorstw, produktów, usług, modeli biznesowych, współczesnego społeczeństwa, budynków oraz całych miast – w wielu krajach na całym świecie. Pomimo różnych charakterystyk branż poszczególnych państw istnieje silna zbieżność w zakresie rozwiązań i używanych narzędzi. Wszystkie z podjętych inicjatyw obejmują prowadzenie badań dotyczących rozwoju przemysłu a priorytetem jest przyśpieszenie wdrożenia i stosowania technologii.(graf. Adobe Stock)Przemysł w PolsceW 2016 roku do rządowej Strategii na rzecz Odpowiedzialnego Rozwoju trafił pomysł powołania Platformy Przemysłu Przyszłości. W czerwcu tego samego roku powstał Zespół ds. Transformacji Przemysłowej z pięcioma grupami roboczymi, które skoncentrowały się na:standardach, wymaganiach odnośnie infrastruktury oraz na specjalizacji inteligentnego przemysłu,wsparciu branży cyfrowej,inteligentnym oprogramowaniu i przetwarzaniu danych,zdefiniowaniu zasad odnośnie edukacji, wymaganych kompetencji i na kadrach potrzebnych przemysłowi prawnych funkcjonowania fundacji było konsekwencją projektu pt. „Inicjatywa dla polskiego przemysłu – Platforma Przemysłu Przyszłości”. 25 stycznia 2019 roku prezydent podpisał ustawę dotyczącą Platformy Przemysłu Przyszłości. W ten sposób stało się możliwe przejście od koncepcji do działania na rzecz cyfrowej transformacji polskich firm PPP (oprac. Andrzej Soldaty / graf. Lech Mazurczyk)Założenia konsumentów dyktują restrykcyjne warunki stawiane przedsiębiorcom, warunkując konieczność zmiany myślenia w zakresie podejścia do wytwarzania, zarządzania, logistyki, kultury pracy oraz ekologii. Głównym problemem współczesnego rynku jest krótki czas życia produktów i usług. Taki stan powoduje wymóg częstych zmian profilu produkcyjnego (usługowego) lub możliwość szybkiego dostosowania się do ciągle rosnących wymagań konsumentów. Można stwierdzić, że przejście na model przedsiębiorstwa zgodny z zasadami przemysłu zwiększa istotną wartość nowych i istniejących produktów, modeli biznesowych i procesów. W ciągu dziewięciu lat od zdefiniowania głównych założeń pojawiło się wiele definicji i wytycznych dla industry Zasadniczą ideę oddaje cytat z „Recommendations for implementing the strategic initiative INDUSTRIE (H. Kagermann, W. Wahlster i J. Helbig) pochodzący z 2013 roku:W przyszłości przedsiębiorstwa będą ustanawiać globalne sieci obejmujące maszyny, systemy magazynowe i urządzenia produkcyjne w postaci systemów cyber-fizycznych. W środowisku produkcyjnym takie systemy obejmą inteligentne maszyny, systemy przechowywania i urządzenia produkcyjne zdolne do autonomicznej wymiany informacji, wyzwalania działań i kontrolowania siebie nawzajem. Ułatwi to fundamentalne usprawnienia procesów przemysłowych związanych z produkcją, inżynierią, zastosowaniem materiałów i łańcuchem dostaw oraz zarządzaniem cyklem życia. Inteligentne fabryki, które już zaczynają funkcjonować, stosują zupełnie nowe podejście do produkcji. Inteligentne produkty są jednoznacznie identyfikowalne, mogą być na bieżąco lokalizowane i znać swoją historię, bieżący status oraz alternatywne drogi prowadzące do osiągnięcia docelowego stanu.(graf. Adobe Stock)Postać definicji stopniowo ewoluowała, jednak koncepcja wdrożenia systemów cyber-fizycznych pozostała niezmienna. Kolejnym krokiem rozwoju było zdefiniowanie technologii bazowych, na których oparto podstawy opracowania rzeczywistych systemów produkcyjnych. Kompleksowe wdrożenie wszystkich technologii jest zadaniem, któremu sprostać mogą jedynie przedsiębiorstwa cechujące się wysokim stopniem automatyzacji produkcji oraz budżetem inwestycyjnym. Należy także pamiętać, że pomiędzy poszczególnymi składowymi występują silne powiązania, które przy implementacji jednego z rozwiązań powodują konieczność uzupełnienia wdrożenia o kolejne elementy.(graf. Lech Mazurczyk)Drugie podejście stanowi uproszczone spojrzenie na problem i odnosi się jedynie do wybranych grup technologii składowych. Brakuje w nim jednak bardzo ważnego czynnika w postaci digitalizacji produkcji, logistyki oraz zarządzania. W fazie rozwoju i testowania aplikacji przemysłowych do wstępnie zdefiniowanych technologii dodano kolejne, jednak sztuczna inteligencja staje się obecnie dominującym trendem w wielu aplikacjach dla mnie wyniknie z przejścia na poziom nowych technologii produkcyjnych stanowi nieodłączną część działań wszystkich zakładów, a korzyści szybko występują w wielu obszarach:poprawa produktywności – wytwarzanie większej liczby produktów lub usług przy jednoczesnej alokacji zasobów w bardziej opłacalny i wydajny sposób, minimalizacja liczby przestojów (dzięki wdrożeniu monitorowania maszyn i zautomatyzowanemu podejmowaniu decyzji),poprawa wydajności – możliwość szybkiej zmiany wolumenów partii produkcyjnych, zastosowanie automatycznych procesów śledzenia i raportowania, usprawnienie procesu wprowadzenia nowych produktów oraz podejmowania decyzji biznesowych,zwiększenie stopnia dzielenia się wiedzą i współpracą – implementacja komunikacji między liniami produkcyjnymi, procesami biznesowymi i działami (bez względu na lokalizację, strefę czasową, platformę lub inne zewnętrzne czynniki), zautomatyzowana dystrybucja informacji na poziomie całej fabryki realizowana na bazie rozwiązań typu machine to machine i system to system, bez żadnej interwencji człowieka,elastyczność i zwinność – łatwiejsze skalowanie istniejących produktów oraz wprowadzanie nowych na dostępne linie produkcyjne, z drugiej strony możliwość wykonania jednorazowych i niepowtarzalnych serii produkcyjnych,ułatwienie uzyskania zgodności – automatyzacja metod i procesów oceny zgodności, w tym śledzenie, inspekcje jakości, kontrola i wprowadzenie seryjności produkcji, rejestrowanie danych i innych czynności pośrednich,poprawa obsługi klienta – eliminacja braku dostępności oferowanych produktów lub usług, zwiększenie dostępnego asortymentu oraz możliwość konfiguracji asortymentu produkowanego w małych seriach (na wyraźne żądanie odbiorcy),zmniejszenie kosztów – uzyskiwane w wyniku automatyzacji, integracji systemów, zarządzania danymi, obsługi napraw i przeglądów, logistyki itp. (ważnymi wskaźnikami w tym zakresie są także > zwiększenie stopnia wykorzystania zasobów, zarówno produkcyjnych, jaki i ludzkich, szybsza produkcja, minimalizacja lub całkowita eliminacja przestojów maszyn i linii produkcyjnych, stopniowa eliminacja problemów związanych z jakością produktów, zmniejszenie marnotrawstwa zasobów, materiałów i produktów, niższe ogólne koszty operacyjne wynikające z wdrożenia opisanych elementów),poszerzenie pola do tworzenia, rozwoju i wdrażania innowacji – poprzez zwiększenie wiedzy na temat procesu produkcyjnego, łańcuchów dostaw i dystrybucji, wydajności biznesowej, a także samych produktów,zwiększenie obrotu i przychodu,podniesienie rentowności – czynnik warunkowany przez wyższe przychody przy jednocześnie zmniejszonym poziomie kosztów, wytwarzanie produktów o wyższej jakości oraz wyższym stopniu innowacyjności technologicznej lub funkcjonalnej, możliwość oferowania klientom spersonalizowanych produktów przy jednoczesnym zastosowaniu metod produkcji masowej, zwiększenie jakości oraz dostępności usług oferowanych klientom i poprawa jakości obsługi klienta,ugruntowanie albo wzrost znaczenia marki produktu/przedsiębiorstwa, a także lepsza rozpoznawalność na rynkach lokalnym i koncepcje stanowią ogólne ujęcie problemu odnoszące się do wszystkich zastosowań (nie tylko przemysłowych). Jak jednak podejść do rozwoju nowoczesności zakładów produkcyjnych w kontekście przemysłu Lech Mazurczyk)Inteligentna fabryka i przemysł związane z rozwojem przemysłu doprowadziły do pojawienia się wielu pomysłów na wdrożenie innowacyjnych technologii w zakresie produkcji i zarządzania. Spojrzenie na nowoczesny przemysł w kontekście technologii bazowych może doprowadzić do wniosku, że przedsiębiorstwo musi wdrożyć wszystkie technologie składowe – tak jednak nie jest, a częściowe rozwiązanie problemu interpretacji zakresu wdrożenia stanowią dwa pojęcia:Inteligentny przemysł – idea zakładająca kompleksową cyfryzację, łączenie produktów, maszyn i ludzi oraz stosowanie nowoczesnych technologii produkcji, inteligentny przemysł łączy, bez względu na przyjęte składowe, trzy elementy > technologie produkcyjne, digitalizację oraz sieć pomiędzy uczestnikami rynku, systemami i użytkownikami końcowymi,Inteligentna fabryka – fabryka bazująca na systemach cyber-fizycznych, które komunikują się ze sobą przy pomocy internetu rzeczy oraz internetu usług, w zakresie inteligentnej fabryki występują także > internet danych oraz internet ludzi, tak sprzężone elementy tworzą kompleksowy system techniczny.(graf. Lech Mazurczyk)Inteligentny przemysł tworzą smart fabryki powiązane siecią. Stopień rozwoju fabryki klasyfikowany jest na podstawie czterech poziomów związanych z używaniem danych.(oprac. Mariusz Hetmańczyk)Digitalizacja oraz ustanowienie sieci nie są możliwe bez nowoczesnych maszyn warunkujących zastosowanie innowacyjnych metod wytwarzania, a podstawą zbudowania inteligentnej fabryki pozostaje wdrożenie zaawansowanej technologicznie produkcji. W tym celu warto poznać podstawowe aspekty i wytyczne dla transformacji zakładów przemysłowych wspomagające proces identyfikacji aktualnego stanu oraz rekomendacje na temat dalszych działań. Poziom dojrzałości cyfrowej swojej firmy można sprawdzić za pomocą internetowego narzędzia Platformy Przemysłu Przyszłości. Test trwa 15 minut, uczestnik natychmiast otrzymuje wynik i rekomendacje. A zaawansowanej produkcji w cyfrowej fabryce będzie poświęcony kolejny artykuł, który opublikujemy w portalu wkrótce.
12jula. Przemysł wysokiej technologii w Polsce nie jest na najwyższym poziomie. Jego przełom tak właściwie nastąpił w XX wieku. Tego typu przemysł zależy od położenia geograficznego kraju. Polska na przykład ma blisko wysokiej rangi uczelnie. Przemysł high-tech jest niezwykle kapitałochłonny, co wynika głównie z bardzo wysokich Przemysł wyhamowuje, tak wynika z opublikowanych dziś danych IHS Markit o wskaźniku PMI. W styczniu spadł on z 56,1 pkt odnotowanych w grudniu do 54,5 pkt. Indeks PMI bazuje na ocenach menedżerów logistyki. Już styczniowe badania nastrojów przedsiębiorców, Głównego Urzędu Statystycznego, wskazywały że sentyment wśród dużych firm jest zły, a teraz znajdujemy tego potwierdzenie. Ostatnie odczyty indeksu PMI rozpieszczały rynek, odnotowując co i rusz kolejne wzrosty Trzeba jednak powiedzieć, że styczniowy wynik mimo że spadkowy, należy uznać za ciągle bardzo dobry. Innymi słowy przemysł odnotował spowolnienie, ale nadal rozwijał się w szybkim tempie. W styczniu przyhamowało zarówno tempo wzrostu produkcji (najwolniejsze od października) jak i nowych zamówień (najniższa wartość od września). Tego osłabienia możemy upatrywać w niezmiennie rosnących cenach, z początkiem roku dochodzi również element skokowego wzrostu cen energii i gazu dla części przedsiębiorców. Indeks PMI potwierdza również, że w efekcie firmy nie miały innego wyboru niż podnieść ceny produktów. Według styczniowych wyników badań ceny wyrobów gotowych wzrosły w najszybszym tempie od trzech miesięcy. Przedsiębiorcom nadal ciążą również wydłużone czasy dostaw Wszystko to powoduje, że firmy w obawie o przyszłość robią coraz więcej zapasów. W naszej ocenie luty przyniesie kolejny spadek indeksu PMI, na którym będą ciążyć niedobory rąk do pracy, wynikające z liczby osób przebywających na kwarantannach, jak również pierwsze, dla niektórych mające znamiona szoku, rozliczenie działalności w oparciu o Polski Ład. Przemysł zaawansowanej technologii (ang. high‑tech industry) obejmuje gałęzie przemysłu wykorzystujące w swojej działalności produkcyjnej najnowsze osiągnięcia i badania naukowe oraz osiągnięcia technologiczne i techniczne. Skupia duży odsetek pracowników naukowych i kadry inżynierskiej, a ponadto cechuje się wysokim udziałem
Numer wniosku: 2 P04E 021 30 Kierownik: dr Anna Świdurska Instytucja realizująca: UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU WYDZIAŁ NAUK GEOGRAFICZNYCH I GEOLOGICZNYCH Typ projektu: własny Dyscyplina naukowa: Geografii i Oceanologii Status: decyzja - zakwalifikowany Dotacja rekomendowana przez Komisję: bd. Dotacja przyznana przez Ministra: 40 930 Konkurs: 30 gazowe olbrzymy Wzory trygonometryczne czas środkowoeuropejski meteoroid Nauka - informacje Egzaminy/Matura Wzory matematyczne Korepetycje Słownik naukowy Leksykon astronomiczny Baza sprzętu laboratoryjnego Badania naukowe Jak to działa? Dotacje z Funduszu Inicjatyw Obywatelskich Wnioski o dofinansowanie projektów badawczych Kalendarium Szkolenia online Aparatura badawcza Prędkość Internetu Sprawdź IP
Przemysł zaawansowanych technologii Prezentację wykonała Natalia Żyłowska To gałąź przemysłu wykorzystująca najnowsze osiągnięcia naukowe, techniczne i technologiczne, zarówno w procesie produkcyjnym, jak i w samym produkcie. Czym jest przemysł high-tech? Czynniki lokalizacji
14 października 2021 Online Przemysł zaawansowanej technologii (hi-tech). Filar konkurencyjnych gospodarek Online Poziom: szkoła podstawowa 4-8, szkoła ponadpodstawowa Przedmiot: geografia Typ spotkania: Webinarium Rozpoczęcie spotkania: 16:00 Miejsce spotkania: Online Prowadzący: dr Wojciech Świder Status Upłynął termin spotkania Spotkanie już się odbyło. Przejdź do kalendarium spotkań Podziel się:
rakterystyką przemysłów high-tech, jest wyższa w przemysłach wysokiej technologii. Największy wzrost wydajności wystąpił w Belgii (65 tys. EUR w przemyśle ogółem, 104 tys. w przemysłach wysokiej technologii), na Malcie (25 tys. EUR w przemyśle ogó-łem, 72 tys. w przemysłach wysokiej technologii) oraz Finlandii (69 tys. EUR w Przemysł w Polsce wciąż jest zjawiskiem słabo rozpoznanym z prozaicznej przyczyny: mało rodzimych firm na poważnie potraktowało to wyzwanie. Jedną z nielicznych, która kompleksowo podeszła do wyzwania stawianego przez nowe biznesowe trendy, jest Amica. Na rodzimym gruncie jej projekt Amica to najlepsze studium przypadku, na którym można śledzić przebieg takiej transformacji ku nowoczesności. Z jednej strony to kwestia samej metody procesu, podzielonego na trzy podstawowe etapy: pierwszym było nakreślenie funkcjonalności docelowego rozwiązania (hasło: „think big”), drugim jest walidacja rozwiązań w małej skali (czyli „start small”), a na końcu przyjdzie czas na szybkie wdrożenie potwierdzonych rozwiązań we wszystkich spółkach Grupy („escalate fast”). Inna kwestia to obszary, w których transformacja przebiega. Zaczęło się od dziesięciu pilotaży, które zostały bardzo symetrycznie rozłożone po całej firmie: trzy z nich dotyczą obszaru współpracy z klientem. Kolejne trzy związane są z optymalizacją łańcucha wartości, następne trzy wprowadzają automatyzację procesów wewnętrznych oraz produkcji, a jeden dotyczy zmian w infrastrukturze IT. Amica To jednak rodzaj rozgrzewki, a Amica docelowo ma objąć całą firmę, która wyznaczyła sobie siedem tzw. wektorów konkurencyjnych. Poza takimi kwestiami jak automatyzacja procesów produkcyjnych czy wykorzystanie sztucznej inteligencji w zaopatrzeniu i budowaniu łańcucha dostaw, dużo jest tu zbierania danych i zaawansowanej analityki. Obejmuje to skuteczniejszą i lepiej celowaną komunikację z klientem, badanie opinii konsumenckiej, a na końcu przetwarzanie tych informacji jako bazy do podejmowania decyzji biznesowych. Schemat wydaje się dość ogólny, ma jednak bardzo istotny cel: lepsze projektowanie produktów z wykorzystaniem szeroko zebranej i lepiej przetworzonej wiedzy. – Warto tu zacząć od przyjrzenia się cyklowi życia produktu – który składa się z procesu projektowania, przygotowywania produkcji, produkcji, sprzedaży, serwisowania i wycofania produktu ze sprzedaży – bo jest on bardzo podobny do cyklu zachowania użytkowników końcowych. Budowa zaawansowanych interakcji na każdym z tych etapów pozwoliłaby nam na bieżące uzyskiwanie od nich informacji, co w naszych produktach powinno się zmienić. Do tego potrzebne są bliższe relacje klientów z działem serwisowym, wykorzystanie technologii IoT (poprzez np. aplikację o wyrobach) oraz stworzenie platformy do zarządzania danymi dotyczącymi kontaktów z naszymi klientami – mówi Robert Stobiński, członek zarządu Grupy Amica ds. transformacji cyfrowej. Zmiany te do pewnego stopnia są reakcją na znaczące skrócenie cyklu życia produktów – jeszcze 15 lat temu wystarczało, gdy Amica nowy produkt wprowadzała na rynek co 7–8 lat, teraz musi to robić co 3–4 lata, a jak zastrzega Stobiński, niewykluczone, że przez rozwój technologiczny niedługo konieczne będzie odświeżanie portfolio produktowego co rok czy dwa lata. Rozwój nowoczesnych technologii jest bowiem tak szybki, że produkty muszą być dostosowywane do nowych wymagań. I to w coraz krótszym cyklu życia. Co więcej, długofalowym celem grupy jest całkowite przejście od systemów deterministycznych do predykcyjnych. Nie będzie to już więc odpowiadanie na teraźniejszość, ale jej ubieganie, także w obszarze oczekiwań klientów. Ma to być baza dla przyszłego projektowania, które stanie się też znacznie bardziej zindywidualizowane. Jak przejście w kierunku Industry zmieni sposób tworzenia produktów, ma pokazać Amica, wykorzystując w projektach dużą ilość danych zebranych od klientów i sprzedawców Fot.: East News – Coraz więcej konsumentów oczekuje, żeby to, co kupują, było spersonalizowane, więc systemy produkcyjne naszej firmy muszą odpowiadać na te wyzwania. Zamiast skupiać się tylko na produkcji masowej, musimy być w stanie produkować dziennie setki bardzo krótkich serii – po dwa egzemplarze, a nawet jeden danego produktu – dodaje Robert Stobiński, który chce sięgnąć po narzędzia sprawdzone już w innych firmach, takie jak np. Digital Twin. Ten tzw. cyfrowy bliźniak to rodzaj wirtualnej repliki danego obiektu, w tym przypadku produktów kuchennych, na którym można pracować, prototypując nowe rozwiązania. – Dysponując takim narzędziem, nasi przedstawiciele handlowi, będąc u klienta, mogliby od razu odpowiedzieć mu, czy dana funkcjonalność jest obecnie możliwa do produkcji, a jeśli nie, to kiedy to nastąpi i ile będzie kosztować. Obecnie udzielenie odpowiedzi na takie pytanie może zająć nawet kilka tygodni – dodaje Robert Stobiński. Jak działa to w praktyce, w dość spektakularny sposób zaprezentował niedawno Ericsson, pracując dla Hyperbat, brytyjskiego producenta akumulatorów do samochodów elektrycznych. Wraz z kilkoma innymi partnerami stworzył dla niego całe środowisko do projektowania w nowej fabryce w Coventry, bazując właśnie na koncepcji cyfrowych bliźniaków. Model ten zastosowano głównie z myślą o tym, aby wspólną pracę nad projektem w czasie rzeczywistym mogły prowadzić zespoły rozproszone po całym świecie. Projektanci i inżynierowie Hyperbat będą więc mogli wirtualnie spacerować i wchodzić w interakcje z obiektami 3D naturalnej wielkości w czasie rzeczywistym za pośrednictwem urządzeń wirtualnej rzeczywistości – każdy ma do tego okulary VR, dzięki którym widzi obiekt, nad którym pracuje, a w rękach trzyma kontrolery, dzięki którym może dokonywać zmian. Każdy z pracowników w dowolnej lokalizacji zyska też możliwość zbudowania produktu w skali 1:1 i wspólnie z innymi może dokonywać wszelkich możliwych manipulacji. Wszystko spięte w całość dzięki wydajnym systemom telekomunikacyjnym bazującym na 5G – to daje gwarancję, że praca wielu osób w różnych krajach będzie przebiegać bez opóźnień na łączach, tak jakby wszyscy znajdowali się w jednym pomieszczeniu. Możliwości, jakie oferuje Digital Twin, są więc bardzo atrakcyjne, zwłaszcza obecnie, gdy na znaczeniu zyskuje zdalna praca i współpraca – np. Siemens kilka miesięcy temu poinformował, że w czasie lockdownu wykorzystanie cyfrowych bliźniaków w firmie wzrosło prawie trzykrotnie. Nie jest to jednak też zjawisko sezonowe, bo jak szacuje firma analityczna Technavio, roczne tempo wzrostu tego biznesu do roku 2025 ma sięgać aż 39 proc., w połowie dekady rynek ten będzie wart już 24,8 mld dolarów. Przemysł w przemyśle odzieżowym Jedną z bardziej obiecujących, a przy tym mniej oczywistych branż, które zaczynają się interesować tego typu rozwiązaniami, jest chociażby przemysł odzieżowy. A ten przez samą swoją skalę – szacuje się, że odpowiada za 2 proc. PKB – może mocno napędzić cały rynek. Także tu wyzwaniem jest proces projektowania, ale w połączeniu z niezwykle ważnym aspektem, jakim jest ogromne marnotrawstwo materiałów – badacze z Uniwersytetu Aalto wykazali niedawno, że przemysł modowy generuje rocznie 92 mln ton odpadów. Przejście na bardziej wirtualny proces projektowania może tę pulę zmniejszyć nawet o 75 proc. Chodzi rzecz jasna o dopasowanie podaży do popytu i ograniczenie niepotrzebnej nadprodukcji. Na świecie stricte cyfrowym i VR oraz AR innowacyjne narzędzia projektowania jednak się nie kończą. Za rzeczywistością wirtualną i poszerzoną pozostaje ta realna, gdzie również znacząco zmieniły się warunki pracy projektantów dzięki zastosowaniu drukarek 3D. I także one znalazły zastosowanie w modzie, również polskiej – na początku kwietnia CCC poinformował o inwestycji w drukarkę 3D, która ma być wykorzystana przy projektowaniu butów. Dzięki niej projektanci zyskają możliwość pracy w modelu iteracyjnym, polegającym na sukcesywnym nanoszeniu zmian na opracowany prototyp. Przejście na prototypy drukowane w ramach własnych pracowni projektowych to nie tylko większe możliwości, ale też oszczędności. Pokazuje to ML System, który z nowoczesnych drukarek korzysta przy pracach nad nowymi produktami ekologicznymi. Chodzi o prototypowanie nowych rozwiązań z linii HQ Glass (szyb grzewczych zasilanych panelami fotowoltaicznymi). Przejście na modelowanie i prototypowanie we własnym zakresie pozwoliło firmie zaoszczędzić czas i obniżyć wydatki z tym związane nawet o 90 proc. – Dzięki drukarkom 3D mogliśmy drukować wszystkie niezbędne części we własnym zakresie, bez zlecania czegokolwiek zewnętrznym podwykonawcom – mówi Paweł Kwaśnicki, zastępca dyrektora ds. badań i transferu technologii w ML System. Korzyści z druku 3D są więc pod każdym względem bardzo namacalne. Dlatego też coraz częściej sięgają po nie polscy bardzo pragmatyczni przedsiębiorcy. Warto jednak pamiętać, że takie narzędzia najbardziej efektywnie działać będą dopiero, gdy zasilimy je odpowiednim strumieniem danych. Traducción de "przemysł zaawansowanych technologii" en español . industria punta es la traducción de "przemysł zaawansowanych technologii" a español. Ejemplo de frase traducida: Należy wziąć również pod uwagę, że zaniknięcie przemysłu zaawansowanych technologii odbiłoby się niekorzystnie na przemyśle telewizyjnym jako całości. ↔ Además, conviene señalar que, si esta

Przemysł jest zasadniczo działem opartym o tradycyjne technologie. Od pewnego czasu dynamicznie rozwija się jednak tak zwany przemysł zaawansowanych technologii (ang. high-technology) oparty o inną filozofię produkcji i zarządzania. Rola przemysłu tradycyjnego stale spada, a nowe technologie zaczynają przejmować prym. Spis tematów (kliknij, aby przejść do wyboru tematów) Przemysł II Przemysł tradycyjny a przemysł zaawansowanych technologii 1. Różnice między przemysłem tradycyjnym i zaawansowanych technologii Tradycyjna działalność przemysłowa oparta jest o sprawdzone rozwiązania technologiczne oraz o wypracowane przez lata modele zarządzania. Podstawową cechą tego przemysłu jest mało zaawansowane przetwórstwo surowców, prowadzące do powstawania zarówno dóbr konsumpcyjnych jak i półproduktów produkcyjnych (do dalszego przetworzenia). Przemysł tradycyjny obejmuje wszystkie typowe gałęzie przemysłu, oparte o sprawdzone przez lata technologie. Przemysł zaawansowanych technologii opiera się z kolei na innowacjach. Dominują zarówno nowe metody produkcji, jak i nowe modele zarządzania. Gotowy produkt cechuje się wysokim stopniem zaawansowania technicznego, często przeznaczony jest jedynie dla wyspecjalizowanych odbiorców. Bardzo istotnym elementem tego typu przemysłu jest udział zaplecza naukowo-badawczego w tworzeniu wyrobów przemysłowych. W przemyśle zaawansowanych technologii wyróżnia się zasadniczo dwie fazy pracy – fazę innowacji (prace naukowo-badawcze, koncepcyjne i wdrożeniowe) oraz fazę produkcji (produkcja masowa gotowego wyrobu). W każdej z nich inne warunki decydują o umiejscowieniu zakładów. W obrębie przemysłu zaawansowanych technologii można wyróżnić takie branże jak: Przemysł biotechnologiczny Przemysł nanotechnologiczny Przemysł teleinformatyczny Przemysł farmaceutyczny (nowe generacje leków) Przemysł zaawansowanej elektorniki Przemysł lotniczy i rakietowy Niektóre branże przemysłu zbrojeniowego Przemysł specjalistycznych instrumentów medycznych i optycznych Produkcja robotów Dynamicznie rozwija się wykorzystanie nowych technologii do produkcji wyrobów medycznych Źródło: 2. Czynniki lokalizacji przemysłu tradycyjnego i przemysłu nowych technologii Działalność z zakresu przemysłu tradycyjnego i przemysłu high-tech (w fazie innowacji) ma inne kluczowe czynniki lokalizacji. Zasadniczo jednak lokalizacja przemysłu high-tech w fazie produkcji masowej skłania się ku czynnikom typowym dla przemysłu tradycyjnego. W zakresie środowiska naturalnego: Lokalizacja przemysłu tradycyjnego jest często uwarunkowana od warunków klimatycznych oraz warunków terenowych. Produkcja niektórych wyrobów nie jest możliwa (lub utrudniona) w określonych strefach klimatu, przeszkodą mogą być także warunki geologiczne lub ukształtowanie powierzchni. Dla przemysłu tradycyjnego optymalny jest klimat umiarkowany i nizinne (lub równinne) ukształtowanie powierzchni. Tradycyjne warunki naturalne nie odgrywają istotnej roli w lokowaniu przemysłu zaawansowanych technologii, w przeciwieństwie do ogólnego stanu środowiska naturalnego. Udowodniono, że osoby z sektora high-tech pracujące w naturalnym i niezdegradowanym środowisku są o wiele bardziej efektywnie. W zakresie zasobów materiałowych: Przemysł tradycyjny opiera się o bazę surowcową – która można by wykorzystać do przetworzenia. Przyczynia się to do częstego lokalizowania zakładów w pobliżu złóż surowców, albo w miejscach gdzie łatwo jest je dostarczyć (dobrze skomunikowanych i łatwo dostępnych). Przemysł zaawansowanych technologii opiera się na kapitale finansowym. Drogie badania naukowe poprzedzające wdrożenie produktu, wymagają odpowiedniego zaplecza. Stąd częsta lokalizacja tego przemysłu w otoczeniu instytucji biznesu i finansów. W zakresie zasobów pracy: Przemysł tradycyjny opiera się w największym stopniu o tanią siłę roboczą. Masowa produkcja dóbr wymaga znacznego zatrudnienia po optymalnie niskich kosztach, stąd lokalizacja zakładów w dużych ośrodkach oraz w miejscach oferujących obniżenie kosztów pracy (np. za sprawą ulg podatkowych lub dofinansowania). Przemysł zaawansowanych technologii jest uzależniony od wykwalifikowanej kadry, zwłaszcza na pierwszym etapie prac poświęconym koncepcji i opracowaniu produktu. Stąd lokalizacja zakładów wokół dużych metropolii, gdzie znajduje się wiele osób z wyższym wykształceniem. W zakresie zapewnienia warunków pracy: Przemysł tradycyjny często wymaga dużej bazy energetycznej, czyli stałego dostępu do niekończących się zasobów energii. Stąd lokalizacja zakładów w miejscach o stabilnych warunkach energetycznych, a najlepiej w regionach produkcji energii. Przemysł zaawansowanych technologii wymaga zaplecza naukowo-badawczego czyli obecności instytutów naukowych i uczelni wyższych. Zapewniają one napływ innowacji oraz wykwalifikowanej kadry, a także mogą wspierać proces badawczy i wdrożeniowy. Stąd lokalizacja tego przemysłu w sąsiedztwie takich ośrodków. W zakresie infrastruktury: W przemyśle tradycyjnej bardzo istotną rolę odgrywa infrastruktura techniczna, która ułatwia transport półproduktów oraz gotowych wyrobów do miejsc ich dystrybucji. Stąd lokowanie przemysłu w miejscach o wyższym poziomie rozwoju infrastruktury technicznej. W przemyśle zaawansowanych technologii infrastruktura techniczna także odgrywa istotną rolę, ale duże znaczenie mają infrastruktura telekomunikacyjna oraz infrastruktura społeczna. Pierwsza zapewnia odpowiedni poziom łączności, często niezbędnej do komunikowania się naukowców i dystrybutorów z całego świata, druga z kolei zapewnia odpowiednie wsparcie instytucjonalne w zakresie rozwoju przedsiębiorczości (zwłaszcza dla start-upów). W zakresie polityki: W przemyśle tradycyjnym czynniki polityczne odgrywają istotną rolę zwłaszcza na poziomie lokalnym. Ważne są przede wszystkim bezpośrednie ulgi inwestycyjne oraz dotacje i dofinansowania. Polityka jest częstą przyczyną lokalizacji określonych zakładów np. w celu zmniejszenia bezrobocia. Zakłady będą częściej lokowane w miejscach udzielających konkretnego wsparcia np. w Specjalnych Strefach Ekonomicznych. W przemyśle zaawansowanych technologii większe znaczenie mają czynniki polityczne na poziomie krajowym lub międzynarodowym. Bezpośrednie wsparcie nie jest tak istotne (poza wyspecjalizowanymi instytucjami wsparcia start-upów) jak przyjazne prawo, stabilność polityczna, dobra polityka edukacyjna oraz łatwość handlu, swoboda przemieszczania się, a nawet swobody polityczne. Rola czynników lokalizacji przemysłu zmienia się w czasie. Wraz z rozwojem przemysłu wysokich technologii oraz odgrywaniem przez niego coraz większej roli w światowej gospodarce, rośnie także znaczenie do tej pory niedocenianych czynników lokalizacji przemysłu, takich jak infrastruktura społeczna czy zaplecze naukowo-badawcze oraz przyjazna polityka państwa, maleje z kolei rola czynników tradycyjnych – przede wszystkim dostępu do bazy surowcowej i bazy energetycznej, zmniejsza się też znaczenie taniej siły roboczej (która jest jednak nadal niezbędna – na etapie produkcyjnym, choć częściowo wypierana jest przez maszyny). W kolejnych latach będziemy obserwowali coraz bardziej daleko idące zmiany. Wiele z nich może być bardzo korzystnych. Należy wiązać nadzieje przede wszystkim ze zmniejszeniem presji na środowisko wywieraną przez przemysł. W High-Tech jest ona znacznie mniejsza, więc rozwój tego sektora może pomóc rozwiązać globalne problemy np. spowolnić proces globalnego ocieplenia. 3. Cechy przemysłu tradycyjnego i przemysłu zaawansowanych technologii – porównanie Cecha charakterystycznaPrzemysł tradycyjnyPrzemysł zaawansowanych technologii Zależność od surowcówSzeroka grupa, duży udział surowców energetycznychWęższa grupa, głównie surowce wykorzystywane w elektronice Koszty inwestycjiŚrednie lub wysokieBardzo wysokie Ryzyko działalnościNiskie lub średnieWysokie lub bardzo wysokie Stopa zwrotu (zyskowność)Niska lub średniaZróżnicowana - od ujemnej do bardzo wysokiej Typ pracownikówTania siła roboczaWykwalifikowana kadra Stopień automatyzacji produkcjiNiski lub średniWysoki Wpływ na środowisko naturalne (uciążliwość)Średni lub wysokiBardzo niski Typ zaspokajanych potrzebPotrzeby niższego i średnio rzęduPotrzeby średniego i wyższego rzędu 4. Skutki rozwoju nowoczesnego przemysłu Skutki rozwoju przemysłu zaawansowanych technologii możemy podzielić na gospodarcze oraz społeczne. Skutki gospodarcze rozwoju przemysłu high-tech: Wzrost innowacji w gospodarce i przyspieszenie tempa wzrostu gospodarczego. Rozwój kolejnych nowych działów gospodarki i tworzenie w nich kolejnych miejsc pracy. Większa zamożność pracowników sektora przemysłowego pozwalająca na podniesienie poziomu ich życia. Szybszy postęp technologiczny i rozwój wynalazków. Wzrost zamożności państw inwestujących w high-tech za sprawą zysków z eksportu oraz opodatkowania. Rozwój technologii przyczyni się wkrótce do pojawienia się „ery robotów” Źródło: Skutki społeczne rozwoju przemysłu high-tech: Zmiany cywilizacyjne związane z upowszechnieniem nowych technologii w życiu codziennym. Dynamizacja rozwoju sektora usługowego w branżach współpracujących. Zmniejszenie liczby wypadków w pracy poprzez zastąpienie pracy ludzkiej przez maszyny. Poprawa stanu środowiska naturalnego korzystnie wpływająca na zdrowie ludności. Wzrost znaczenia edukacji i wykształcenia wyższego w społeczeństwie. Wyższa kultura pracy. Więcej bardziej różnorodnych stanowisk pracy. Wraz z rozwojem przemysłu high-tech będzie wzrastać rola wyższego wykształcenia Źródło: Rozwój nowoczesnego przemysłu często będzie się odbywał kosztem likwidacji tradycyjnych zakładów przemysłowych. Może się to wiązać z następującymi zagrożeniami: Bezrobocie technologiczne związane z wypieraniem pracy ludzkiej przez maszyny. Niezdolność dostosowania się (zwłaszcza osób starszych) do zachodzących coraz szybciej zmian technologicznych i cywilizacyjnych. Wzrost metropolizacji skutkujący coraz większą marginalizacją peryferiów. Pogorszenie statusu społecznego i finansowego pracowników fizycznych i osób o niskich kwalifikacjach. Pogłębienie nierówności społecznych między wykształconymi-bogatymi i niewykwalifikowanymi-biednymi.

Po węgiersku przemysł zaawansowanych technologii tłumaczy się na: csúcstechnológiás ipar. W kontekście przetłumaczonych zdań, przemysł zaawansowanych technologii występuje przynajmniej 359 razy.
Przemysł zaawansowanych technologii oznaczany skrótem hi-tech rozwija się dzięki działalności badawczo-rozwojowej (B + R), gdyż rozwija się w oparciu o najnowsze wyniki badań naukowych i nowinkach technologicznych. Nie jest jednak możliwy ich rozwój bez odpowiednio wysokich nakładów finansowych. Te są relatywnie niskie w porównaniu do innych krajów europejskich w związku z czym obecnie wspierane są zasoby budżetu państwa w procesie tworzenia centrów rozwojowych. Ich istnienie jest konieczne w szybkim rozwoju poszczególnych dziedzin przemysłu hi-tech jak na przykład lotniczej, IT, farmaceutycznej, motoryzacyjnej, telekomunikacyjnej. W Polsce tworzenie i funkcjonowanie takich centrów B + R określa ustawa z dnia 9 listopada 2017 r. o zmianie niektórych ustaw w celu poprawy otoczenia prawnego działalności innowacyjnej. Obecnie jest ich 35 i znajdują się one w Warszawie, Krakowie, Wrocławiu, Lublinie, Trójmieście, Katowicach, Łodzi. Firmy, które są zlokalizowane w centrach B + R są powiązane między sobą w zakresie kooperacji nauki i biznesu i opierają się na funkcjonowaniu ośrodków innowacji i przedsiębiorczości, do których zaliczane są klastry przemysłowe, parki technologiczne, centra transferu technologii. Zobacz również Klasyfikacja skał magmowych Fazy Księżyca Procesy i formy eoliczne Elektrownie w Europie - rozmieszczenie Urbanizacja Wykorzystanie energii biomasy Aleja Tornad Góry zrębowe Wyżyna Irańska Tatry Formy podziemne krasu Wulkanizm Akumulacja Przełom Wisły w Tyńcu Góry fałdowe
Restrukturyzacja jest procesem, w którym odchodzi się od energochłonnych i nierentownych gałęzi przemysłu tradycyjnego, na rzecz rozwoju przemysłu zaawansowanej technologii. Przemysł zaawansowanej technologii jest przemysłem opartym na wiedzy - produktami tej gałęzi są m.in. układy scalone, komputery, smartfony, samochody
Co to jest PRZEMYSŁ ZAAWANSOWANEJ TECHNOLOGII: gałęzie przemysłu, które charakteryzuje: (a) wysoki stopień technicznego wyrafinowania produktu; (b) gwałtowny wzrost zatrudnienia wkrótkim czasie; (c) wysoki udział procentowy wydatków na badania irozwój wwartości sprzedaży oraz (d) znaczny udział procentowy badaczy iinżynierów wogólnej liczbie zatrudnionych. Przykładowo, we Francji na podstawie tych wskaźników do p. z. t. zaliczono wybrane branże chemii, farmacji, informatyki, przemysłu maszynowego, elektroniki, przemysłu elektrycznego, aeronautyki imechaniki precyzyjnej. Zob. też biegun technologii, nowe przestrzenie przemysłowe. Czym jest przemysł zaawansowanej technologii znaczenie w Słownik geografia P .
Według najnowszych zestawień, liderem rynku biotechnologicznego w Polsce jest firma Celon Pharma, której wartość przekroczyła 2,2 mld zł. Celon Pharma to przedsiębiorstwo założone w 2002 roku. W skład firmy wchodzi ponad 200 naukowców, spośród których 1/3 ma tytuł doktora biologii molekularnej, farmacji lub chemii.
W pierwszej połowie roku firmy zarobiły o 18,6% więcej niż rok wcześniej, przy jednoczesnym wzroście kosztów o 15,4% - podał GUS. Na ponad 2 biliony złotych przychodów największy udział przypadł dużym przedsiębiorstwom. Ta grupa charakteryzowała się również największym wzrostem w skali roku – przekraczającym 20%. Pierwsze półrocze firmy kończą z wynikiem finansowym netto blisko dwukrotnie wyższym niż w analogicznym okresie 2020 r. i o ponad 50% lepszym niż w I półroczu 2019 r. Zysk netto wykazało ponad trzy czwarte przedsiębiorstw. W przetwórstwie przemysłowym na plusie było ponad 80% jednostek. Bardzo dobre wyniki zapowiadał już GUS w opublikowanym pod koniec sierpnia wstępnym szacunku. Sygnał, że gospodarka poważnie się odradza dało się również odnaleźć we wstępnym odczycie PKB za II kwartał (wzrost o 11,1% r/r). Teraz dostajemy potwierdzenie, że motory napędowe polskiej gospodarki czyli przemysł i eksport są niezmiennie w bardzo dobrej kondycji. To na co zwrócić należy uwagę to odbicie inwestycji. W pierwszej połowie br. nakłady inwestycyjne przedsiębiorstw były wyższe o ponad 8% niż przed rokiem. Jednocześnie nadal, niestety nie udało nam się odzyskać tempa wzrostu inwestycji sprzed okresu pandemii. Analizując poszczególne sektory nie jest zaskoczeniem, że największe wzrosty nadal odnotowujemy w przemyśle, który w czasach pandemii okazał się najbardziej odporny na obostrzenia i zamrożenie gospodarki. Z kolei realizacja odłożonego popytu przy stopniowym luzowaniu obostrzeń niewątpliwie przyczyniła się do wzrostu przychodów w sektorze usługowym. Branża, która nadal odczuwa skutki walki z pandemią jest gastronomia W Łukasiewicz – IMiF dostarczamy innowacyjne rozwiązania dla świata biznesu i przemysłu, dla społeczeństwa i gospodarki. Energoelektronika. Telemedycyna. Przemysł obronny i kosmiczny. Certyfikacja i Akredytacja. Materiały Fotoniczne. Grafen. Materiały i Przyrządy. Układy Scalone i Mikrosystemy. Zaloguj się Załóż konto Menu Oferta edukacyjna Szkoły językowe i uczelnie Zaloguj się Załóż konto Przejdź do listy zasobów. prowadzenie lekcji Filtry: karty pracy Poziom: Część 2 / 4. Przemysł Zaktualizowany: 2015-09-01
Gurbała M., Przemysł zaawansowanej technologii w Polsce, „Kwartalnik Nauk o Przedsiębiorstwie" 2007, nr 3. Kulczycka J. i inni, Nauka i technika w 2006 roku, Główny Urząd Statystyczny, Warszawa 2007. OECD Factbook 2008, OECD, 2008. Rocznik statystyczny Polski 2005, Główny Urząd Statystyczny, Warszawa 2005.
Firmy wydają krocie na rozwój technologii wirtualnej i rozszerzonej rzeczywistości. Jak podaje IDC, wydatki na te rozwiązania będą rosły mimo pandemii i w tym roku znacznie przekroczą 10 mld USD. Biznes będzie więc działał na styku dwóch wymiarów. To początek rewolucji, w której swój udział mają Polacy. Rzeczywistość rozszerzona (AR), reklamowana jako technologia rozrywkowa, staje się jednym z podstawowych narzędzi w sektorze przemysłowym. Osoba w charakterystycznych okularach, wykonująca z pozoru dziwne gesty, to już niekoniecznie fan gier komputerowych. Równie dobrze to może być technik realizujący zamówienie serwisowe. Udowodnili to niedawno inżynierowie z ABB w Aleksandrowie Łódzkim. Wirtualne okulary, realne korzyści Najnowsze analizy amerykańskiej firmy doradczej IDC pokazują, że rynek VR i AR, czyli technologii wirtualnej i rozszerzonej rzeczywistości, jest odporny na wirusową infekcję. Z wrześniowej aktualizacji prognoz ekspertów z USA wynika, że łączna suma wydatków na wspomniane technologie wyniesie 10,7 mld USD, czyli o 35% więcej niż w 2019. Szacowana wartość rynku VR i AR jest równa sumie wszystkich zagranicznych inwestycji bezpośrednich w Polsce w poprzednim roku. Stary Kontynent odpowiada obecnie za około 15% światowych wydatków na VR/AR. Analitycy z IDC prognozują, że w Europie tegoroczne wydatki na te rozwiązania wyniosą 1,6 mld USD. – Ponieważ bardzo trudno przewidzieć, co przyniesie najbliższa przyszłość, wielu naszych klientów decyduje się skorzystać z narzędzi zdalnego wsparcia, które mogą być odpowiedzią na bieżące problemy, ale też zapewnić dostęp do regularnych szkoleń technicznych – mówi Marcin Góralski, dyrektor sprzedaży serwisu w biznesie Automatyki Przemysłowej ABB w Polsce. – Biorąc pod uwagę jedną z podstawowych zalet zdalnego wsparcia, czyli szybki czas reakcji oraz znaczne ograniczenie kosztów podróży i zakwaterowania serwisu, tego typu usługi będą coraz częściej zastępować tradycyjny serwis obiektowy. Oczywiście nawet w dobie zaawansowanej cyfryzacji przemysłu fizyczna obsługa obiektowa będzie musiała istnieć, jednak zdalne wsparcie z wykorzystaniem technologii VR i AR ułatwi pracę serwisantów i zwiększy ich wydajność – tłumaczy ekspert ABB. Długoterminowe perspektywy dla branży wirtualnej rzeczywistości są równie dobre, jak te krótkoterminowe. IDC szacuje, że w latach 2019 – 2024, wydatki na VR i AR będą rosły średniorocznie o blisko 80%. Za 4 lata rynek rzeczywistości wirtualnej i rozszerzonej osiągnie wartość aż 136,9 mld USD. Zaskakująco duża część tego tortu przypadnie firmom działającym w przemyśle. VR-owe rewolucje w przemyśle Przemysł jest branżą, która zawsze chętnie korzystała z innowacji, nie inaczej jest z wirtualnym światem. Analizując raport opracowany przez Amerykanów, zauważymy, że to sektor wytwórczy będzie napędzać wzrost wydatków VR/AR w okresie prognozy, tj. 2019-2024. Technologia ta sprawdza się szczególnie dobrze w obszarze zdalnych szkoleń i współpracy, pomiędzy oddalonymi od siebie placówkami. Doskonale obrazuje to przykład Europy, gdzie te dwa obszary będą odpowiedzialne za blisko połowę wydatków (46,3%) w 2020 roku. – Pandemia przyspieszyła wdrożenie tego typu rozwiązań. O tym, jakie możliwości oferuje technologia VR i AR wiedzieliśmy od dawna, jednak ze względu na ówczesną łatwość poruszania się po świecie, nie było odpowiednio mocnego impulsu, by te pomysły wdrażać – zauważa Dominik Grodzki, odpowiadający za serwis mobilny w biznesie Systemów Napędowych ABB. Przemysł nie zatrzymał się wraz z wybuchem pandemii, a wiele rozpoczętych projektów musiało zostać dokończonych na czas. Jak twierdzi ekspert, właśnie to przyczyniło się do tak dynamicznego rozwoju wspomnianej gałęzi IT. – W szerszej perspektywie miało to ogromne znaczenie dla gospodarki, bo wstrzymanie czy opóźnienie inwestycji mogło skończyć się tragicznie dla wielu firm. Musieliśmy wesprzeć klientów i zrobić wszystko, co w naszej mocy, aby nie tylko pozostali z nami, ale w ogóle przetrwali okres lockdownu – podkreśla Grodzki. W podobnym tonie nt. przyszłości technologii rozszerzonej rzeczywistości i jej wykorzystania w przemyśle, wypowiada się Michael Campbell, wiceprezes firmy PCT, zajmującej się tworzeniem rozwiązań dla biznesu wykorzystujących AR: – Rzeczywistość rozszerzona pozwala na transfer wiedzy przy zachowaniu dystansu społecznego i nie wymuszając zmiany miejsca. Pomaga to firmom sprawnie diagnozować problemy i utrzymywać zasoby w dobrym stanie. Dobre, bo polskie Liczona w tysiącach kilometrów odległość między usługodawcą a klientem przestała być problemem nawet w takich projektach jak instalacja urządzeń przemysłowych. Na przełomie września i października br. odbyło się już drugie zdalne uruchomienie napędów prowadzone przez serwisantów ABB w Polsce. Klientem była firma mająca fabrykę na Węgrzech, produkująca urządzenia dla przemysłu petrochemicznego. Wcześniej ten sam polski zespół odpowiadał za bliźniaczy projekt dla klienta z Pakistanu. Nowatorska współpraca na odległość poskutkowała licznymi zapytaniami z rynku. – Na świecie tego typu rozwiązania są już znane i stosowane, a mimo to serwis napędów z Polski pozostaje zdecydowanie w czołówce. Z informacji, które do nas docierają, wynika nawet, że to my podnosimy innym poprzeczkę – Dominik Grodzki chwali swoich kolegów z Aleksandrowa Łódzkiego, gdzie działa globalne centrum napędów średniego napięcia ABB. A jak wygląda taka operacja w praktyce? – Prowadzący uruchomienie jest cały czas on-line z zespołem wykonującym prace u klienta. Na monitorach ma obraz z kamery lub okularów AR oraz z laptopa osoby będącej na miejscu. Każda operacja jest przez niego potwierdzona, a w razie wątpliwości weryfikuje otrzymane dane. Zespół ma ustalone przerwy na regenerację i odpoczynek. Po skończonym dniu prowadzący uruchomienie wraca do domu, mimo iż nadzoruje prace oddalone setki kilometrów od miejsca, w którym przebywa. W tradycyjnej formule nie zawsze to było możliwe. To również pozwala na ograniczenie stresu i zmęczenia związanego z długim przebywaniem poza domem – relacjonuje Grodzki. Widoki na przyszłość Stosowanie rozwiązań z zakresu AR czy VR to nie tylko możliwość realizacji skomplikowanych uruchomień bez względu na czas i odległość. Dostępne są już rozwiązania, w których algorytmy obliczają przybliżoną żywotność poszczególnych urządzeń, jakie wykorzystywane są w przemyśle. Następnie tak przygotowane statystyki wyświetlają się za pośrednictwem specjalnych okularów, np. Microsoft HoloLens, które ma na sobie inżynier. Obraz wirtualny (z danymi dotyczącymi poszczególnych urządzeń) nakłada się z rzeczywistym. Ogranicza to konieczność zbyt częstych przeglądów czy wymian prewencyjnych. W Korporacyjnym Centrum Technologicznym ABB w Krakowie rozwijany jest system Augmented Field Procedures, który cyfryzuje środowisko pracy obsługi, pomagając przeprowadzić standardowe czynności obiektowe ściśle według obowiązujących procedur, bez pomięcia żadnego kroku, co mogłoby prowadzić do niebezpiecznych sytuacji. Korzystając z tabletów przemysłowych lub okularów HoloLens obsługa uzyskuje dostęp do danych o zasobach, procesach i procedurach w czasie rzeczywistym (nie musi używać do tego rąk). Pozwala to zminimalizować ryzyko błędu ludzkiego, a jednocześnie zwiększa bezpieczeństwo i kontrolę nad procesem. Wciąż jednak mierzymy się z problemem, jakim jest transmisja danych. Przy wszystkich zdalnych usługach wykonywanych w czasie rzeczywistym, kluczowe znaczenie ma jakość połączenia internetowego. Zapewnienie dobrej jakości transmisji jest jednym z punktów procedury zdalnego uruchomienia, stąd oczywiste nadzieje pokładane w technologii mobilnej 5G. – Chcemy, by jak najwięcej nowych napędów wyjeżdżało z naszych fabryk z gotowymi rozwiązaniami do łączenia się z siecią. Pozwoli nam to oferować klientom gotowe rozwiązania, bez konieczności dokupowania komponentów i tracenia czasu na konfigurację połączenia – mówi Dominik Grodzki. Tym bardziej zainteresowanych tą technologią przedsiębiorców powinna cieszyć informacja, że ilość połączeń 5G znacznie wzrośnie w perspektywie najbliższych 5 lat. Niedawna prognoza CCS Insight przewiduje, że do 2025 na całym świecie będzie ich aż 3,6 mld. Dla porównania, w kończącym się 2020, będzie to zaledwie 0,25 mld. Wiele z tych rozwiązań na pewno już z nami pozostanie, jak choćby wirtualne szkolenia czy zdalna diagnostyka. – Nikogo już nie dziwi, gdy wchodząc do naszego biura, widzi osobę w okularach do wirtualnej rzeczywistości, wykonującą w powietrzu z pozoru dziwne gesty. Obecnie inwestujemy w systemy do wirtualnej rzeczywistości i nie jest to już dla nas nic nadzwyczajnego. W zasadzie to nowa normalność – dodaje Dominik Grodzki. A co przyniesie przyszłość? Marcin Góralski z ABB zwraca uwagę na to, że rozwiązania cyfrowe będą coraz częściej zastępować te tradycyjne. – Przy ograniczonych zasobach ludzkich przemysł będzie szukał coraz bardziej zaawansowanych technologii, aby zniwelować wpływ braku odpowiedniej wiedzy i doświadczenia na efektywne prowadzenie produkcji. Zmienia się podejście do tradycyjnych usług serwisowych. Potrzebne są zupełnie nowe modele współpracy pomiędzy dostawcami urządzeń i technologii a ich użytkownikami. W sukurs przychodzą właśnie nowe narzędzia, jak choćby VR / AR – zauważa ekspert. Wsparcie zdalne to przyszłość branży przemysłowej, która już może czerpać z tej technologii więcej korzyści niż rynek konsumencki. Ten ograniczył się w zasadzie do gier wideo. ABB
Kompetencje cyfrowe (ang. digital competences) obejmują krytyczne i odpowiedzialne korzystanie z technologii cyfrowych i wykorzystywanie ich do uczenia się, pracy i udziału w życiu społecznym. Kompetencje cyfrowe to nie obsługa komputera i programów. Wraz z postępem technologicznym zmienia się ich zakres.
Przemysł zaawansowanych technologii, tzw. high-tech (ang. high technology), to nowoczesne gałęzie, do których zalicza się: technologie informatyczne i telekomunikacyjne, a także biotechnologię, nanotechnologię i robotykę. Zobacz prezentacje; Notatka kl7b – Natalia S. Czynniki lokalizacji to przesłanki pozwalające wybrać optymalną lokalizację zakładu przemysłowego. Czynniki lokalizacji nowoczesnego przemysłu to nowoczesna infrastruktura, zaplecze naukowo‑badawcze, czyste i przyjazne człowiekowi środowisko. Wysoka kapitałochłonność przemysłu high‑tech powoduje, że rozwija się on przede wszystkim w państwach wysoko rozwiniętych. Zakłady przemysłu zaawansowanych technologii grupują się w klastry i dystrykty przemysłowe, tworząc bieguny technologiczne, które z kolei skupiają się w technopolie. Obszary przemysłu wysokiej technologii pełnią funkcje ekonomiczne, przestrzenne i społeczne. Czytaj więcej…. Przemysł TRADYCYJNY I NOWOCZESNY NA ŚWIECIE. Rola przemysłu high-tech;

Gdziekolwiek jesteś, Renner Polska jest w stanie. dostarczyć technologię farb i lakierów Grupy Renner. BENEK LAKIERY. 34-130 Kalwaria Zebrzydowska, ul. Jagiellońska 23. tel. (33)488-38-20 / 888-800-648. e-mail: sklep@beneklakiery.pl - web: benek-lakiery.business.site. COLORLAK POLSKA SP.

Rewitalizacja przemysłu mikroelektronicznego w Polsce oraz wdrażanie zaawansowanych technologii fotonicznych to główne cele Łukasiewicza – Instytutu Mikroelektroniki i i fotonika to dwie kluczowe technologie umożliwiające dostarczanie użytkownikom innowacyjnych rozwiązań. Dzięki kompetencjom zespołu Instytutu oraz unikatowej infrastrukturze badawczej w IMiF powstają projekty z zakresu telemedycyny, energoelektroniki, zaawansowanej inżynierii materiałowej i rezultaty odpowiadają na potrzeby współczesnego społeczeństwa i przemysłu. Naukowcy i inżynierowie opracowują np. bioczujniki do detekcji wirusów, czujniki do zdalnego monitorowania parametrów fizjologicznych pacjenta, do sygnalizowania zagrożeń pojawiających się w środowisku, jakości wody oraz nadzorowania procesów produkcyjnych w przemyśle w Łukasiewicz – Instytucie Mikroelektroniki i FotonikiPonad 250 projektów badawczych w ciągu 6 latŁukasiewicz – IMiF powstał w październiku 2020 r. w wyniku połączenia Instytutu Technologii Elektronowej i Instytutu Technologii Materiałów Elektronicznych. Instytut to nie tylko kilkadziesiąt lat doświadczenia, ale przede wszystkim kadra składająca się z inżynierów, fizyków i chemików oraz dostęp do unikatowych nowocześnie wyposażonych laboratoriów. To gwarancja prowadzenia wysokiej jakości projektów naukowych i prac B+R w obszarach zaawansowanych materiałów, mikro- i nanoelektroniki oraz fotoniki.− W czasie transformacji ustrojowej mikroelektronika została całkowicie zapomniana. Teraz, wraz z synergią kadr i zasobów technologicznych, zwiększyliśmy możliwości badawcze i wdrożeniowe dla biznesu w Polsce. Dysponujemy wysublimowaną infrastrukturą badawczą, dzięki której możemy podejmować wyjątkowo złożone wyzwania i badania. Bierzemy udział w krajowych i europejskich projektach, szukamy odpowiedzi na problemy i wyzwania współczesnego świata, takie jak zanieczyszczenia powietrza oraz źródła nowej, czystej energii – podkreśla dr inż. Piotr Guzdek, zastępca dyrektora ds. projektów jest finansowanych z programów UE, Horyzont 2020. Sieć Badawcza Łukasiewicz i Instytut zainicjowały także 3 projekty o dużym znaczeniu dla rozwoju polskiej gospodarki: budowę fabryki układów scalonych, linii pilotażowej przyrządów na bazie azotku galu oraz Centrum Fotoniki służące ludziom i środowiskuZe swoimi pomysłami trafiają do Instytutu innowacyjni przedsiębiorcy z Polski. Razem z nimi naukowcy z IMiF rozwijają technologie, które mają służyć nie tylko rozwojowi nauki, ale przede wszystkim jest specjalna wkładka do obuwia, która zbiera dane na temat pracy stopy podczas naturalnego ruchu – biegania, skakania i chodzenia. Informacje te pozwolą lekarzom na dopasowanie indywidualnej terapii dla osób z wadami stóp, po urazach i złamaniach lub pomogą zaproponować ćwiczenia odciążające stopę w przypadku otyłości lub stopy cukrzycowej. − Tym projektem, realizowanym wspólnie z firmą Orto-med i Szpitalem Uniwersyteckim z Zakopanego, mamy nadzieję zainteresować Ministerstwo Zdrowia i zachęcić je do przeprowadzenia badań przesiewowych wśród dzieci i młodzieży w zakresie wad postawy – tłumaczy dr inż. Ewa Klimiec, pomysłodawca na potrzeby współczesnego świataŁukasiewicz – IMiF prowadzi innowacyjne prace badawcze w dziedzinie fotoniki, uważanej za technologię XXI w. Naukowcy pracują nad opracowaniem optycznych, miniaturowych układów scalonych w zakresie podczerwieni, tzw. Photonic Integrated Circuits (PICs), które są fotonicznym odpowiednikiem mikroprocesorów i otwierają nowe możliwości dla wielu gałęzi przemysłu i życia portfolio kluczowych technologii fotonicznych, które mają ogromny potencjał aplikacyjny, należy zaliczyć technologie światłowodowe i mikrooptyczne, np. lasery i detektory promieniowania. Instytut ma w ofercie technologię wytwarzania nowych materiałów: węglika krzemu, grafenu epitaksjalnego i płatkowego, zaawansowanej ceramiki. Bada ich właściwości pod kątem przemysłowego z tych wynalazków muszą poczekać na swój moment w historii, ale zespół IMiF chce tę historię tworzyć i odegrać rolę w ich wrażaniu.
Wdrożenie technologii Przemysł 4.0 – park maszynowy z najnowszym oprogramowaniem CAD/CAM hyperMILL. Oprogramowanie CAM hyperMILL oblicza ścieżki narzędzia niezależnie od maszyny i sterownika. Postprocesory są przez nas dopasowane do maszyn i sterowań, do których mają być używane. Wybierając CAM Technology nie musisz martwić się
Zarówno w Polsce, jak i na całym świecie, rozwija się przemysł high-tech. Czym jest to spowodowane? Na czym opiera się przemysł wysokiej technologii i jakie są prognozy na najbliższe lata? Sprawdzamy. Przemysł high-tech – co to jest? Gałęzie przemysłu high-tech Przemysł wysokiej techniki w Polsce i na świecie Przemysł high-tech – co to jest? Jedną z gałęzi przemysłu jest high-tech, określany również przemysłem wysokiej technologii. Charakteryzuje się tym, że w procesie produkcji wykorzystywane są najnowsze osiągnięcia naukowe, techniczne oraz technologiczne. Ponadto gotowe wyroby powinny posiadać cechy innowacyjności. Dynamiczny rozwój przemysłu high-tech można było zauważyć w latach 70. XX w. Wtedy zapoczątkowana została trzecia rewolucja przemysłowa, która bazowała na najnowszych dokonaniach. Co istotne, przemysł wysokiej technologii w dużej mierze opiera się na badaniach naukowych, przeznaczany jest na nie spory kapitał. Oprócz tego ważna jest automatyzacja, komputeryzacja produkcji. Gałęzie przemysłu high tech Zarówno w Polsce, jak i na świecie, stale rozwijają się kolejne gałęzie przemysłu high-tech. Obecnie największy nacisk kładzie się na przemysł komputerowy, elektronikę oraz nanotechnologię. Dokonywane są nowe odkrycia w dziedzinie technologii lotniczej i kosmicznej, a także w przemyśle chemicznym. W tyle nie pozostaje przemysł farmaceutyczny i kosmetyczny, biotechnologia, inżyniera materiałowa. High-tech wkrada się również w świat medycyny, pojawia się np. optoelektronika. Co ciekawe, w przemyśle wysokiej technologii aktywnie działają zarówno duże, międzynarodowe firmy, jak i małe przedsiębiorstwa, które za cel wybrały sobie specyficzną niszę rynkową. Przemysł wysokiej technologi w Polsce i na świecie Wraz z rozwojem przemysłu high-tech można zauważyć wyodrębnienie się technopolii. Są to okręgi przemysłowe, miasta, w których działają parki technologiczne i naukowe. Najwięcej można ich znaleźć w USA, w tym najbardziej znaną Dolinę Krzemową w San Francisco, która stała się siedzibą wielu korporacji transnarodowych. Swoje oddziały mają tam takie firmy jak Apple Inc., Google, Facebook, eBay, Intel, Hewkett-Packard, Yahoo!, SanDisk, Nividia oraz Adobe System. Oprócz tego duże znaczenie w Stanach Zjednoczonych mają takie obszary jak Droga 128 w Bostonie oraz Orange County w Los Angeles. W wielkiej Brytanii wyróżni się Silicon Glen w Edynburgu oraz Korytarz M4 w Londynie. Natomiast Niemcy mogą pochwalić się technopolis Silicon Bawaria w Monachium. Również i w Polsce ten sektor działalności się rozwija, choć na mniejszą skalę. Pierwszym technoparkiem był Poznański Park Naukowo-Technologiczny. Łódź nie pozostaje w tyle, może się pochwalić Bionanoparkiem oraz Łódzkim Regionalnym Parkiem Naukowo-Technologicznym. W Krakowie mieści się Krakowski Park Technologiczny, gdzie siedziby ma ComArch, Motorola i Shell. Trzeba jednak zwrócić uwagę na jedną rzecz – ze względu na konieczność stosowania nowych technologii oraz prowadzenia badań naukowych, przemysł high-tech jest kapitałochłonny. Z tego względu można zauważyć zależność między dynamiką rozwoju przemysłu wysokiej technologii a poziomem rozwoju ekonomicznego kraju.
Przemysł software i technologii informatycznych. Stany Zjednoczone to najprężniej działająca i największa gospodarka informatyczna na świecie. Mieszczą się w niej innowacje komputerowe, produkty zaawansowanej technologii informatycznej oraz związane z nimi usługi i serwisy.
Polska gospodarka może odnieść ponadprzeciętne korzyści dzięki zwiększonej produktywności i nowym modelom biznesowym. Najkorzystniejsze jest inwestowanie w gospodarkę opartą o dane - wynika z badania zleconego przez Ministerstwo Polsce rynek danych rozwija się szybciej niż w UE. Dynamika wzrostu w latach 2015-2016 wyniosła 28,9 proc. i była wyższa niż łączna dynamika krajów UE (9,3 proc). Dwa lata temu wartość europejskiej gospodarki danych szacowana była na 285 mld euro, co stanowiło 1,94 proc. unijnego PKB. Przy odpowiednich regulacjach i inwestycjach w technologie cyfrowe, do 2020 r. wartość rynku danych może osiągnąć 739 mld euro, co będzie stanowiło 4 proc. PKB Unii Europejskiej. W 2016 roku przemysł danych w UE obejmował ponad 255 000 firm, a do roku 2020 będzie ich prawie 360 000. Oznacza to wzrost o blisko 9 proc. rocznie. Rynek danych to również rynek pracowników. Dotychczas w UE zatrudnienie w branżach związanych z przetwarzaniem danych znalazło ponad 6 mln osób, a mimo to pracodawcy już sygnalizują, że brakuje około 400 tys. kolejnych pracowników, i że luka ta będzie się powiększać. W erze cyfrowej dane stały się surowcem, który stanowią podstawę do kreowania nowych wartości i do zaspokajania ludzkich potrzeb. Dane generowane są zarówno przez aktywność człowieka, rejestracje zjawisk środowiska naturalnego (np. dane geodezyjna, meteorologiczne) oraz aktywność przemysłową (dane z czujników linii produkcyjnych). Dane można postrzegać jako czynnik produkcji, obok kapitału i pracy, jako niezbędną infrastrukturę do działania i podejmowania przedsięwzięć o charakterze społecznym lub ekonomicznym. W Ministerstwie Cyfryzacji zleciliśmy badanie - którego celem było uzyskanie odpowiedzi, jakie znaczenia dla rozwoju Polski mają dane i ich przetwarzanie. Eksperci na nasze potrzeby stworzyli specjalny wskaźnik intensywności wykorzystania danych w gospodarce. Wyniki badania pokazały, że Polska należy do grupy gospodarek, w których zwiększenie intensywności oparcia działalności gospodarczej o dane skutkuje ponadprzeciętnym efektem przyrostu produkcji w porównaniu do innych sposobów jej zwiększania. Oznacza to, że spośród dostępnych dla nas możliwości rozwojowych najkorzystniejsze jest inwestowanie w gospodarkę opartą o dane. Polska gospodarka może odnieść ponadprzeciętne korzyści dzięki zwiększonej produktywności i nowym modelom biznesowym. Na podstawie wyników badania oraz naszych doświadczeń i prac analitycznych wypracowaliśmy koncepcję Przemysł+, która pokazuje możliwość rozwijania w Polsce gospodarki cyfrowej dzięki trzem filarom. Niezbędne jest, abyśmy w Polsce rozwijali dziedziny związane ze zbieraniem, analizowanym oraz przetwarzaniem danych. Mamy kompetencje i dogodne warunki do rozwijania zarówno dużych centrów danych oraz rozwiązań z zakresu sztucznej inteligencji i zaawansowanej analityki danych. Do pełnego wykorzystania zbudowanych kompetencji analitycznych jest niezbędna cyfryzacja polskiego przemysłu, dzięki czemu generowane dane przemysłowe pozwolą na istotny wzrost produktywności. Równie ważne jest zapewnienie bezpiecznego obrotu gospodarczego dla obywateli i przedsiębiorców w świecie cyfrowym. Osiągniemy to dzięki wykorzystaniu nowoczesnych technologii transferu wartości. W Polsce widać już wyraźnie zalążki gospodarki opartej o dane. Mamy wiele firm, które z dużym sukcesem oferują swoje usługi na rynku polskim i europejskim oraz coraz odważniej podejmują ekspansje na rynki pozaeuropejskie. Jednakże, aby gospodarka oparta o dane mogła w Polsce w pełni zafunkcjonować musimy zmierzyć się z licznymi wyzwaniami: budowaniem świadomości zachodzących zmian w środowiskach gospodarczych i w społeczeństwie, wsparciem transformacji cyfrowej ze strony państwa oraz wysiłkiem regulacyjnym w kraju i na szczeblu UE. Mając na uwadze działania UE na rzecz budowania Jednolitego Rynku Cyfrowego oraz wypracowaną koncepcję Przemysł+ proponujemy przyjąć unikalne polskie podejście wobec danych, w którym główne założenie to – nieprzetworzone dane są jak powietrze i powinny być wolne. (#RAW_DataIsAIR), ponieważ dane generowane przez nas, przez środowisko naturalne, przez naszą aktywność gospodarczą i społeczną stanowią „oddech dla innowacji”, tworząc tym samym środowisko dla gospodarki cyfrowej. Wdrożenie koncepcji Przemysł+ stanowi również szanse dla poszczególnych krajów członkowskich, jaki i całego Jednolitego Rynku Cyfrowego, na skokowy wzrost produktywności gospodarki. Takie podejście gwarantuje, że rewolucja cyfrowa będzie pracowała dla nas wszystkich. Realizacja prezentowanej koncepcji wymaga szerokich sojuszy państw podobnie myślących o gospodarce cyfrowej oraz obecności tam, gdzie wcześniej Polska nie była aktywny, nie tylko w UE, ale także na forach ONZ, OECD i WTO. Jednolity rynek to wspólny wysiłek państw, tak aby nie tylko zbudować silny rynek wewnętrzny, ale także stworzyć przewagi konkurencyjne w grze globalnej. Polska upatruje swoją wyjątkową szansę w budowie jednolitego rynku cyfrowego, dlatego jest liderem ambitnych inicjatyw, w tym regulacji dotyczącej swobodnego przepływu danych w UE. Koncepcja została już zaprezentowana w październiku 2017 r. trakcie konferencji Poland Going Digital w Brukseli - Cyfrowa Europa się rozpędza, a Polska nadaje jej tempo. To szansa zarówno dla nas jako kraju, tworzącego nowoczesną gospodarkę, ale też dla Europy jako projektu politycznego. W 2022 r. 53% ankietowanych przedsiębiorstw poinformowało o podjęciu działań lub inwestycji dotyczących cyfrowego rozwoju. 71% przedsiębiorstw w USA odpowiedziało, że korzysta z co najmniej jednej zaawansowanej technologii cyfrowej, średnie wykorzystanie takich technologii w UE wynosi 69%. Prace Komisji Geografii Przemysłu Nr 13 Warszawa–Kraków 2009 Krzysztof Stachowiak Uniwersytet im. Adama Mickiewicza w Poznaniu Ewolucja przemysłu zaawansowanej technologii i sektora teleinformatycznego (ICT) w Finlandii W ostatniej dekadzie XX wieku Finlandia przebojem weszła do ścisłej czołówki państw rozwijających gospodarkę opartą na wiedzy, stając się tym samym jednym z Cele lekcji w postaci wymagań edukacyjnych Uczeń: omawia cechy przemysłu tradycyjnego; opisuje czynniki wpływające na rozmieszczenie przemysłu tradycyjnego na świecie; omawia cechy i rozmieszczenie przemysłu zaawansowanych technologii; wymienia działy przemysłu high-tech; omawia na podstawie mapy
2. Przemysł tradycyjny i przemysł zaawansowanej technologii: 3. Zmiany w przemyśle na świecie: 4. Obszary koncentracji przemysłu: 5. Budownictwo: 6. Źródła energii i bilans energetyczny: 7. Produkcja i zużycie energii elektrycznej: 8. Zasoby naturalne Ziemi. Podział i rola surowców mineralnych
17iB.